博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
linux中fcntl()、lockf、flock的区别
阅读量:6247 次
发布时间:2019-06-22

本文共 5408 字,大约阅读时间需要 18 分钟。

fcntl()、lockf、flock的区别

——lvyilong316

    三个函数的作用都是给文件加锁,那它们有什么区别呢?首先flock和fcntl是系统调用,而lockf是库函数lockf实际上是fcntl的封装,所以lockf和fcntl的底层实现是一样的,对文件加锁的效果也是一样的。后面分析不同点时大多数情况是将fcntl和lockf放在一起的。下面首先看每个函数的使用,从使用的方式和效果来看各个函数的区别。

 1. flock

函数原型

#include 

int flock(int fd, int operation);  // Apply or remove an advisory lock on the open file specified by fd,只是建议性锁

    其中fd是系统调用open返回的文件描述符,operation的选项有:

LOCK_SH :共享锁

LOCK_EX :排他锁或者独占锁

LOCK_UN : 解锁。

LOCK_NB:非阻塞(与以上三种操作一起使用)

    关于flock函数,首先要知道flock函数只能对整个文件上锁,而不能对文件的某一部分上锁,这是于fcntl/lockf的第一个重要区别,后者可以对文件的某个区域上锁。其次,flock只能产生劝告性锁我们知道,linux存在强制锁(mandatory lock)和劝告锁(advisory lock)。所谓强制锁,比较好理解,就是你家大门上的那把锁,最要命的是只有一把钥匙,只有一个进程可以操作。所谓劝告锁,本质是一种协议,你访问文件前,先检查锁,这时候锁才其作用,如果你不那么kind,不管三七二十一,就要读写,那么劝告锁没有任何的作用。而遵守协议,读写前先检查锁的那些进程,叫做合作进程。再次,flock和fcntl/lockf的区别主要在fork和dup

    (1) flock创建的锁是和文件打开表项(struct file)相关联的,而不是fd。这就意味着复制文件fd(通过fork或者dup)后,那么通过这两个fd都可以操作这把锁(例如通过一个fd加锁,通过另一个fd可以释放锁),也就是说子进程继承父进程的锁。但是上锁过程中关闭其中一个fd,锁并不会释放(因为file结构并没有释放),只有关闭所有复制出的fd,锁才会释放。测试程序入程序一。

程序一

点击(此处)折叠或打开

  1. #include stdio.h>
  2. #include unistd.h>
  3. #include stdlib.h>
  4. #include sys/file.h>
  5. int main (int argc, char ** argv)
  6. {
  7.     int ret;
  8.     int fd1 = open("./tmp.txt",O_RDWR);
  9.     int fd2 = dup(fd1);
  10.     printf("fd1: %d, fd2: %d\n", fd1, fd2);
  11.     ret = flock(fd1,LOCK_EX);
  12.     printf("get lock1, ret: %d\n", ret);
  13.     ret = flock(fd2,LOCK_EX);
  14.     printf("get lock2, ret: %d\n", ret);
  15.     return 0;
  16. }

运行结果如图,对fd1上锁,并不影响程序通过fd2上锁。对于父子进程,参考程序二。

程序二

点击(此处)折叠或打开

  1. #include stdio.h>
  2. #include unistd.h>
  3. #include stdlib.h>
  4. #include sys/file.h>
  5. int main (int argc, char ** argv)
  6. {
  7.     int ret;
  8.     int pid;
  9.     int fd = open("./tmp.txt",O_RDWR);
  10.     if ((pid = fork()) == 0){
  11.         ret = flock(fd,LOCK_EX);
  12.         printf("chile get lock, fd: %d, ret: %d\n",fd, ret);
  13.         sleep(10);
  14.         printf("chile exit\n");
  15.         exit(0);
  16.     }
  17.     ret = flock(fd,LOCK_EX);
  18.     printf("parent get lock, fd: %d, ret: %d\n", fd, ret);
  19.     printf("parent exit\n");
  20.     return 0;
  21. }

    运行结果如图,子进程持有锁,并不影响父进程通过相同的fd获取锁,反之亦然。

(2)使用open两次打开同一个文件,得到的两个fd是独立的(因为底层对应两个file对象),通过其中一个加锁,通过另一个无法解锁,并且在前一个解锁前也无法上锁。测试程序如程序三:

程序三

点击(此处)折叠或打开

  1. #include stdio.h>
  2. #include unistd.h>
  3. #include stdlib.h>
  4. #include sys/file.h>
  5. int main (int argc, char ** argv)
  6. {
  7.     int ret;
  8.     int fd1 = open("./tmp.txt",O_RDWR);
  9.     int fd2 = open("./tmp.txt",O_RDWR);
  10.     printf("fd1: %d, fd2: %d\n", fd1, fd2);
  11.     ret = flock(fd1,LOCK_EX);
  12.     printf("get lock1, ret: %d\n", ret);
  13.     ret = flock(fd2,LOCK_EX);
  14.     printf("get lock2, ret: %d\n", ret);
  15.     return 0;
  16. }

结果如图,通过fd1获取锁后,无法再通过fd2获取锁。

(3) 使用exec后,文件锁的状态不变。

(4) flock不能再NFS文件系统上使用,如果要在NFS使用文件锁,请使用fcntl。

(5) flock锁可递归,即通过dup或者或者fork产生的两个fd,都可以加锁而不会产生死锁。

2. lockf与fcntl

函数原型

#include 

int lockf(int fd, int cmd, off_t len);

   fd为通过open返回的打开文件描述符。

   cmd的取值为:

   F_LOCK:给文件互斥加锁,若文件以被加锁,则会一直阻塞到锁被释放。

   F_TLOCK:同F_LOCK,但若文件已被加锁,不会阻塞,而回返回错误。

   F_ULOCK:解锁。

   F_TEST:测试文件是否被上锁,若文件没被上锁则返回0,否则返回-1

   len:为从文件当前位置的起始要锁住的长度。

   通过函数参数的功能,可以看出lockf只支持排他锁,不支持共享锁。

#include 

#include 

int fcntl(int fd, int cmd, ... /* arg */ );

struct flock {

... 

short l_type;/* Type of lock: F_RDLCK, F_WRLCK, F_UNLCK */

short l_whence; /* How to interpret l_start: SEEK_SET, SEEK_CUR, SEEK_END */ 

off_t l_start;   /* Starting offset for lock */ 

off_t l_len;     /* Number of bytes to lock */ 

pid_t l_pid; /* PID of process blocking our lock (F_GETLK only) */ 

...        

   }; 

    文件记录加锁相关的cmd 分三种:

F_SETLK:申请锁(读锁F_RDLCK,写锁F_WRLCK)或者释放所(F_UNLCK),但是如果kernel无法将锁授予本进程(被其他进程抢了先,占了锁),不傻等,返回error。

F_SETLKW:和F_SETLK几乎一样,唯一的区别,这厮是个死心眼的主儿,申请不到,就傻等。

F_GETLK:这个接口是获取锁的相关信息: 这个接口会修改我们传入的struct flock。

   通过函数参数功能可以看出fcntl是功能最强大的,它既支持共享锁又支持排他锁,即可以锁住整个文件,又能只锁文件的某一部分。

   下面看fcntl/lockf的特性:

(1) 上锁可递归,如果一个进程对一个文件区间已经有一把锁,后来进程又企图在同一区间再加一把锁,则新锁将替换老锁。

(2) 加读锁(共享锁)文件必须是读打开的,加写锁(排他锁)文件必须是写打开。

(3) 进程不能使用F_GETLK命令来测试它自己是否再文件的某一部分持有一把锁。F_GETLK命令定义说明,返回信息指示是否现存的锁阻止调用进程设置它自己的锁。因为,F_SETLK和F_SETLKW命令总是替换进程的现有锁,所以调用进程绝不会阻塞再自己持有的锁上,于是F_GETLK命令绝不会报告调用进程自己持有的锁。

(4) 进程终止时,他所建立的所有文件锁都会被释放,队医flock也是一样的。

(5) 任何时候关闭一个描述符时,则该进程通过这一描述符可以引用的文件上的任何一把锁都被释放(这些锁都是该进程设置的),这一点与flock不同。如:

fd1 = open(pathname, …);

lockf(fd1, F_LOCK, 0);

fd2 = dup(fd1);

close(fd2);

则在close(fd2)后,再fd1上设置的锁会被释放,如果将dup换为open,以打开另一描述符上的同一文件,则效果也一样。

fd1 = open(pathname, …);

lockf(fd1, F_LOCK, 0);

fd2 = open(pathname, …);

close(fd2);

(6) 由fork产生的子进程不继承父进程所设置的锁,这点与flock也不同。

(7) 在执行exec后,新程序可以继承原程序的锁,这点和flock是相同的。(如果对fd设置了close-on-exec,则exec前会关闭fd,相应文件的锁也会被释放)。

(8) 支持强制性锁:对一个特定文件打开其设置组ID位(S_ISGID),并关闭其组执行位(S_IXGRP),则对该文件开启了强制性锁机制。再Linux中如果要使用强制性锁,则要在文件系统mount时,使用_omand打开该机制。

3. 两种锁的关系

那么flock和lockf/fcntl所上的锁有什么关系呢?答案时互不影响。测试程序如下:

点击(此处)折叠或打开

  1. #include unistd.h>
  2. #include stdio.h>
  3. #include stdlib.h>
  4. #include sys/file.h>
  5. int main(int argc, char **argv)
  6. {
  7.     int fd, ret;
  8.     int pid;
  9.     fd = open("./tmp.txt", O_RDWR);
  10.     ret = flock(fd, LOCK_EX);
  11.     printf("flock return ret : %d\n", ret);
  12.     ret = lockf(fd, F_LOCK, 0);
  13.     printf("lockf return ret: %d\n", ret);
  14.     sleep(100);
  15.     return 0;
  16. }

测试结果如下:

$./a.out

flock return ret : 0

lockf return ret: 0

可见flock的加锁,并不影响lockf的加锁。两外我们可以通过/proc/locks查看进程获取锁的状态。

$ps aux | grep a.out | grep -v grep

123751   18849  0.0  0.0  11904   440 pts/5    S+   01:09   0:00 ./a.out

$sudo cat /proc/locks | grep 18849

1: POSIX  ADVISORY  WRITE 18849 08:02:852674 0 EOF

2: FLOCK  ADVISORY  WRITE 18849 08:02:852674 0 EOF

我们可以看到/proc/locks下面有锁的信息:我现在分别叙述下含义:

1) POSIX FLOCK 这个比较明确,就是哪个类型的锁。flock系统调用产生的是FLOCK,fcntl调用F_SETLK,F_SETLKW或者lockf产生的是POSIX类型,有次可见两种调用产生的锁的类型是不同的;

2) ADVISORY表明是劝告锁;

3) WRITE顾名思义,是写锁,还有读锁;

4) 18849是持有锁的进程ID。当然对于flock这种类型的锁,会出现进程已经退出的状况。

5) 08:02:852674表示的对应磁盘文件的所在设备的主设备好,次设备号,还有文件对应的inode number。

6) 0表示的是所的其实位置

7) EOF表示的是结束位置。 这两个字段对fcntl类型比较有用,对flock来是总是0 和EOF。

转载地址:http://pvgia.baihongyu.com/

你可能感兴趣的文章
《ANSYS Workbench 14有限元分析自学手册》——1.2 ANSYS Workbench分析的基本过程
查看>>
log4jdbc 数据库访问日志框架使用
查看>>
《Stata统计分析与应用(第2版)》一第2章 Stata中的数据处理
查看>>
《电脑音乐制作实战指南:伴奏、录歌、MTV全攻略》——2.7 消除歌曲中某个合音或乐器...
查看>>
谁是 2015 年推动开源技术的十大领军人物?
查看>>
《Bootstrap开发精解:原理、技术、工具及最佳实践》一2.6 下载Bootstrap源代码...
查看>>
Ubuntu Tweak 项目正式终止,相关站点关闭
查看>>
J2Cache 已经提交到 Maven 中央库
查看>>
《计算机网络:自顶向下方法(原书第6版)》一2.1 应用层协议原理
查看>>
《基于ArcGIS的Python编程秘笈(第2版)》——2.8 添加图层到地图文档
查看>>
Gmail 即将落实阻止 JavaScript 的安全策略
查看>>
【PMP认证考试之个人总结】第 10 章 项目风险管理
查看>>
从超模转职成为程序媛是一种怎样的体验
查看>>
《C++入门经典(第6版)》——1.2 编译和链接源代码
查看>>
五个改善你服务器日志的技术
查看>>
Using Big Data to Build Customer Loyalty
查看>>
在 Ubuntu 中使用 NTP 进行时间同步
查看>>
《七周七数据库》一一2.3 第2天:高级查询、代码和规则
查看>>
《Java EE 7精粹》—— 1.3 Java EE 7有什么新功能
查看>>
利用OpenVSwitch构建多主机Docker网络
查看>>